Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
1.
Energy Reports ; 9:1050-1060, 2023.
Article in English | ScienceDirect | ID: covidwho-20231219

ABSTRACT

HVAC systems consume up to 50% of the total energy demanded by buildings. This paper aims to provide quantitative assessment of the HVAC solutions used on the highly efficient houses competing in the Solar Decathlon Middle East 2021. This international competition challenges university students to design, build, and operate sustainable zero-energy houses. The analysis includes the system selection, capacity, and coefficient of performance (COP), as well as the monitored indoor temperature, relative humidity, and CO2 levels. The university teams' selection capacity (systems availability) and budget were affected by the COVID-19 pandemic. However, they designed their houses to respond appropriately to arid climates and reduce HVAC consumption. The study evaluates the HVAC solutions of all eight projects, providing more information about the four top-ranked teams. Most homes use air-to-air, decentralized, and multizone air-conditioners. The teams made the best effort to select systems that significantly exceed the COP required by the local regulations. Some also exceed the local energy codes regarding refrigerants' global warming potential. The average COP (at T1 i.e., Moderate Climate Conditions) of air-to-air systems was 3.71 kW/kW, and the air-to-water system was 3.42 kW/kW. The lower installed cooling capacity per area of air-to-water HVAC systems was 57 W/m2 and 122 W/m2 in the air-to-air ones. In several cases, the HVAC systems' consumption was affected by the short assembly period (15 days), nonprofessional student construction, and the lack of a testing period before starting the competition. Nevertheless, these houses exhibited excellent performance, and their analysis brought relevant lessons for buildings in arid climates.

2.
Renew Sustain Energy Rev ; 182: 113378, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-2327702

ABSTRACT

The Covid-19 outbreak raised great attention to the importance of indoor air quality in buildings. Even if the Covid-19 epidemic is nearing an end, all stakeholders agree that increasing outside air flow rates is beneficial for decreasing the likelihood of contagion, lowering the risk of future pandemics, and enhancing the general safety of the interior environment. Indeed, diverse concerns raised about whether the ventilation standards in place are still adequate. In this context, this research intends to assess the suitability of current ventilation standards in addressing the current pandemic scenario and to offer novel criteria and guidelines for the design and operation of HVAC systems, as well as useful guidance for the creation of future ventilation standards in a post-Covid-19 scenario. To that end, a comprehensive analysis of the ANSI/ASHRAE 62.1 is carried out, with an emphasis on its effectiveness in reducing the risk of infection. Furthermore, the efficacy of various ventilation strategies in reducing the likelihood of contagion has been investigated. Finally, because building ventilation is inextricably linked to energy consumption, the energy and economic implications of the proposed enhancements have been assessed. To carry out the described analysis, a novel method was developed that combines Building Energy Modelling (BEM) and virus contagion risk assessment. The analyses conducted produced interesting insights and criteria for ventilation system design and operation, as well as recommendations for the development of future standards.

3.
2023 CHI Conference on Human Factors in Computing Systems, CHI 2023 ; 2023.
Article in English | Scopus | ID: covidwho-2323709

ABSTRACT

Good indoor air quality (IAQ) is critically important for many aspects of our lives, including as we've found recently in reducing the transmission of airborne diseases such as COVID-19. Delivering good IAQ poses several challenges to organisations: it can require changes in working practices, be bounded by infrastructure capabilities such as buildings and their heating and ventilation systems, and result in substantial energy usage. In this study we have conducted a preliminary investigation measuring IAQ in a typical 'science lab' classroom, and engaging with stakeholders to jointly explore these data. Our mixed methods approach uncovers an indoor air quality 'trilemma', which relates air quality, energy usage, and stakeholder practices that can be mediated by, and understood as, a site for potentially impactful future HCI designs. © 2023 Owner/Author.

4.
International Journal of Innovative Research and Scientific Studies ; 6(2):301-309, 2023.
Article in English | Scopus | ID: covidwho-2322710

ABSTRACT

To assess the implications of air conditioning and ventilation on droplet and airborne transmission of SARS-COV-2, several scientific research databases were searched and cross-referenced. Then, an analysis was conducted on the findings pertinent to interaction between several environmental variables affected by HVAC systems and their effect on Virus transmission. The results suggest that airflow velocity may interfere with the trajectories of large respiratory droplets and aerosols. Lower relative humidity provided suitable conditions for virus survival whereas higher temperatures increased aerosol formation, but were detrimental to virus survival. Suboptimal temperatures and humidity can compromise pathogen filtration functions in the nose, while proper use of HVAC functions can help preserve them. Transmission of SARS-COV-2 is not affected solely by the virus's internal properties. Ambient conditions, whether natural or modified by HVAC systems can have a significant effect on the transmissibility and virulence of both the virus and virus-related sickness. The current infection prevention measures, such as social distancing, need to be revised in certain scenarios where natural ventilation or HVAC systems are involved. This will offer, hopefully, higher protection from infections with SARS-COV-2 and similar pathogens. © 2023 by the authors.

5.
Journal of Engineering and Applied Science ; 70(1):48, 2023.
Article in English | ProQuest Central | ID: covidwho-2322049

ABSTRACT

The impact of the COVID pandemic has resulted in many people cultivating a remote working culture and increasing building energy use. A reduction in the energy use of heating, ventilation, and air-conditioning (HVAC) systems is necessary for decreasing the energy use in buildings. The refrigerant charge of a heat pump greatly affects its energy use. However, refrigerant leakage causes a significant increase in the energy use of HVAC systems. The development of refrigerant charge fault detection models is, therefore, important to prevent unwarranted energy consumption and CO2 emissions in heat pumps. This paper examines refrigerant charge faults and their effect on a variable speed heat pump and the most accurate method between a multiple linear regression and multilayer perceptron model to use in detecting the refrigerant charge fault using the discharge temperature of the compressor, outdoor entering water temperature and compressor speed as inputs, and refrigerant charge as the output. The COP of the heat pump decreased when it was not operating at the optimum refrigerant charge, while an increase in compressor speed compensated for the degradation in the capacity during refrigerant leakage. Furthermore, the multilayer perception was found to have a higher prediction accuracy of the refrigerant charge fault with a mean square error of ± 3.7%, while the multiple linear regression model had a mean square error of ± 4.5%. The study also found that the multilayer perception model requires 7 neurons in the hidden layer to make viable predictions on any subsequent test sets fed into it under similar experimental conditions and parameters of the heat pump used in this study.

6.
17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022 ; 2022.
Article in English | Scopus | ID: covidwho-2325603

ABSTRACT

Adequate and efficient building ventilation and filtration are key factors that play an important part in controlling the spread of airborne pathogens like SARS-CoV2 virus (Allen and Ibrahim, 2021). However, most public buildings lack the ability to test and verify performance of their HVAC and mechanical systems for airborne pathogens due to limitations in existing diagnostic assessment tools. Carleton University performed air sampling campaigns in 24 different spaces to assist in the assessment of our HVAC systems performance across campus. The sampling campaign collected over 600 aerosol samples using veriDART's patented DNA-tagged tracer particles that simulate airborne pathogen mobility and exposure within and between rooms. The primary goal of the survey was to assess aerosol migration at the floor level as well as the potential dilution rate of COVID-19 aerosols. © 2022 17th International Conference on Indoor Air Quality and Climate, INDOOR AIR 2022. All rights reserved.

7.
Renew Sustain Energy Rev ; 182: 113356, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-2317307

ABSTRACT

New COVID-19 ventilation guidelines have resulted in higher energy consumption to maintain indoor air quality (IAQ), and energy efficiency has become a secondary concern. Despite the significance of the studies conducted on COVID-19 ventilation requirements, a comprehensive investigation of the associated energy challenges has not been discussed. This study aims to present a critical systematic review of the Coronavirus viral spreading risk mitigation through ventilation systems (VS) and its relation to energy use. COVID-19 heating, ventilation and air conditioning (HVAC)-related countermeasures proposed by industry professionals have been reviewed and their influence on operating VS and energy consumption have also been discussed. A critical review analysis was then conducted on publications from 2020 to 2022. Four research questions (RQs) have been selected for this review concerning i) maturity of the existing literature, ii) building types and occupancy profile, iii) ventilation types and effective control strategies and iv) challenges and related causes. The results reveal that employing HVAC auxiliary equipment is mostly effective and increased fresh air supply is the most significant challenge associated with increased energy consumption due to maintaining IAQ. Future studies should focus on novel approaches toward solving the apparently conflicting objectives of minimizing energy consumption and maximizing IAQ. Also, effective ventilation control strategies should be assessed in various buildings with different occupancy densities. The implications of this study can be useful for future development of this topic not only to enhance the energy efficiency of the VS but also to enable more resiliency and health in buildings.

8.
Atmosphere ; 14(4):698, 2023.
Article in English | ProQuest Central | ID: covidwho-2297382

ABSTRACT

Airborne transmission via aerosol particles without close human contact is a possible source of infection with airborne viruses such as SARS-CoV-2 or influenza. Reducing this indirect infection risk, which is mostly present indoors, requires wearing adequate respiratory masks, the inactivation of the viruses with radiation or electric charges, filtering of the room air, or supplying ambient air by means of ventilation systems or open windows. For rooms without heating, ventilation, and air conditioning (HVAC) systems, mobile air cleaners are a possibility for filtering out aerosol particles and therefore lowering the probability of indirect infections. The main questions are as follows: (1) How effectively do mobile air cleaners filter the air in a room? (2) What are the parameters that influence this efficiency? (3) Are there room situations that completely prevent the air cleaner from filtering the air? (4) Does the air cleaner flow make the stay in the room uncomfortable? To answer these questions, particle imaging methods were employed. Particle image velocimetry (PIV) was used to determine the flow field in the proximity of the air cleaner inlet and outlet to assess regions of unpleasant air movements. The filtering efficiency was quantified by means of particle image counting as a measure for the particle concentration at multiple locations in the room simultaneously. Moreover, different room occupancies and room geometries were investigated. Our results confirm that mobile air cleaners are suitable devices for reducing the viral load indoors. Elongated room geometries, e.g., hallways, lead to a reduced filtering efficiency, which needs to be compensated by increasing the volume flow rate of the device or by deploying multiple smaller devices. As compared to an empty room, a room occupied with desks, desk separation walls, and people does not change the filtering efficiency significantly, i.e., the change was less than 10%. Finally, the flow induced by the investigated mobile air cleaner does not reach uncomfortable levels, as by defined room comfort standards under these conditions, while at the same time reaching air exchange rates above 6, a value which is recommended for potentially infectious environments.

9.
Atmosphere ; 14(4):716, 2023.
Article in English | ProQuest Central | ID: covidwho-2297048

ABSTRACT

The risk of COVID-19 infection from virulent aerosols is particularly high indoors. This is especially true for classrooms, which often do not have pre-installed ventilation and are occupied by a large number of students at the same time. It has been found that precautionary measures, such as the use of air purifiers (AP), physical distancing, and the wearing of masks, can reduce the risk of infection. To quantify the actual effect of precautions, it is not possible in experimental studies to expose subjects to virulent aerosols. Therefore, in this study, we develop a computational fluid dynamics (CFD) model to evaluate the impact of applying the aforementioned precautions in classrooms on reducing aerosol concentration and potential exposure in the presence of index or infected patients. A CFD-coupled Wells–Riley model is used to quantify the infection probability (IP) in the presence of index patients. Different cases are simulated by varying the occupancy of the room (half/full), the volumetric flow rate of the AP, two different locations of the AP, and the effect of wearing masks. The results suggest that using an AP reduces the spread of virulent aerosols and thereby reduces the risk of infection. However, the risk of the person sitting adjacent to the index patient is only marginally reduced and can be avoided with the half capacity of the class (physical distancing method) or by wearing face masks of high efficiencies.

10.
Atmosphere ; 14(4):743, 2023.
Article in English | ProQuest Central | ID: covidwho-2296724

ABSTRACT

The indoor climate of non-climatized churches is usually subject to cyclical fluctuations of temperature and relative humidity induced by external climate conditions which might be dampened by the high thermal capacity of their envelope. However, several phenomena affect their indoor climate (e.g., internal gains due to people and artificial lighting, air infiltration, etc.), which lead to environmental variations that might jeopardize the artworks contained within. In particular, one of the most influential parameters that may affect non-climatized churches is the massive and intermittent presence of people who constantly visit their spaces. In such regard, long-term monitoring allows the collection of environmental data with different building operation conditions and visitor fluxes. This paper analyses the indoor climate of the Milan Cathedral (Duomo di Milano) in Italy for three continuous years (including the lockdown period that occurred in 2020 caused by the COVID-19 pandemic), with a focus on visitors' effects on the indoor environment and the conservation of the main artworks contained within. The results of the analysis have shown that spaces with huge volume are most influenced by the opening of the doors rather than the hygrothermal contribution of the intermittent presence of massive crowds. Moreover, the absence of visitors for a prolonged period correlates with an improvement in the indoor conservation conditions for artworks, especially those made of hygroscopic materials, due to the reduction in short, rapid climate fluctuations.

11.
17th IBPSA Conference on Building Simulation, BS 2021 ; : 2971-2978, 2022.
Article in English | Scopus | ID: covidwho-2295872

ABSTRACT

This paper presents an evaluation of the impact of changes in building HVAC system operation guidelines, aiming to reduce COVID-19 propagation, on building energy performance. Given the recentness and emergency nature of these responses, there is a gap in the literature addressing the energy performance impact of these new recommendations. Practical measures recommended by ASHRAE and REHVA are implemented in a computer simulation model of an existing building, created using the eQUEST program. Results show the increase of building EUI and operating cost mostly in the range of 20% to 60%. This increase is mainly due to additional: (a) space heating and cooling thermal loads, and (b) ventilation fans and pumps electricity consumption;caused by longer operation hours, increased ventilation rates and the implementation of humidity control. This research showcases the application of modelling tools in the support of public guidelines development, and it serves as an encouragement to consultants and researchers to explore methods for mitigating the impact and increasing feasibility of public health regulations. © International Building Performance Simulation Association, 2022

12.
ASME 2022 International Mechanical Engineering Congress and Exposition, IMECE 2022 ; 6, 2022.
Article in English | Scopus | ID: covidwho-2266889

ABSTRACT

The energy consumption of Heating Ventilation and Air Conditioning (HVAC) systems accounts for a large proportion of global energy usage so even a small percentage of energy savings in these systems will account for important absolute value savings. One such saving can be realized by better designs as well as optimizing existing air distribution system. The indoor air quality (IAQ) is also greatly impacted by the air distribution system. In this work, the task of optimizing both the placement and the design of diffusers is investigated so acceptable Air Changes per Hour (ACH) numbers are attained with less energy consumption and good thermal comfort. The ANSYS Fluent software was used to optimize the design and placement of a newly developed diffuser. The proposed air distribution system is design to produce conditions like what one would experience while standing outside in a small breeze while experiencing perfect weather (room temperature, uniform air temperature distribution, air speed less than 2 m/s) [1]). This work is an extension of a previous study where a new diffuser design was proposed, which takes advantage of the Coanda effect [2]. The numerical analysis includes realistic models of a 9 × 9 × 3 m (width × length × height) classroom, which is occupied by students and a teacher. To be more realistic, it includes furniture, a door and windows. The simulated Heating Ventilation and Air Conditioning (HVAC) system complies with ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) standards for acceptable air quality. This investigation proposes a template on how anyone can optimize the location and placement of the air diffusers while achieving both thermal comfort and good IAQ. While this work was inspired by the COVID-19 pandemic this is foreseen to be an important ongoing issue and could lead to future advances in HAVC system that improve IAQ and produce better thermal comfort with improved energy savings. Copyright © 2022 by ASME.

13.
9th International Conference on Computer, Control, Informatics and Its Applications: Digital Transformation Towards Sustainable Society for Post Covid-19 Recovery, IC3INA 2022 ; : 55-59, 2022.
Article in English | Scopus | ID: covidwho-2265689

ABSTRACT

The COVID-19 pandemic has influenced many aspects of human life, including working environments. Some research finds that there is a tendency to the increase of energy and CO2 emissions of large office buildings in developed countries, such as US and Europe's top five economics, post-pandemic. Therefore, advanced heating, ventilation and air-conditioning (HVAC) technology that can reduce energy consumption in the building sector will yield a significant impact on the total national energy consumption. Many buildings equipped with conventional control in their HVAC control systems, such as PI or PID controls. Such controllers have drawbacks like unable to handle cross-coupling nature and constraints in a HVAC system. Conversely, model predictive control (MPC) - which belongs to advanced control - has the advantages when dealing with the system with constraints and uncertainties as it can take into account them in its optimization control problem formulation. This paper derived mathematically an industrial HVAC system based on Hammerstein-bilinear model - a model consists of a static nonlinearity followed by a dynamic bilinear subsystem. The obtained linear output-error (OE) models are subsequently used as plant models in the MPC design. The MPC controller performance is quite superior and proven to be able to meet the desired control objective (keeping the zone temperature in range of . In addition, the MPC controller gives more economic energy consumption (about save) than the PI one both for temperature and humidity control loop. © 2022 ACM.

14.
New Media & Society ; 25(2):324-344, 2023.
Article in English | Academic Search Complete | ID: covidwho-2260975

ABSTRACT

Amid a warming planet and a surge in digital activity precipitated by COVID-19 lockdowns, the ecological impacts of cloud infrastructures are of increasing interest to scholars and publics. Deemed "essential workers," data center operators maintain server uptime by keeping equipment cool (via air conditioning). Failure results in overheating and a state of service interruption called downtime. Drawing on ethnographic research in data centers, this article introduces the concept of thermotemporalities to illustrate how time, temperature, and expertise converge in novel formations. By attending to the embodied practices and discursive pronouncements of data center operators, I reveal how uptime (cold) and downtime (hot), a binary opposition, are performative genres rather than discrete referents. Emerging out of this dyadic interplay, I locate a species of aspirational identity I call thermomasculinities. [ FROM AUTHOR] Copyright of New Media & Society is the property of Sage Publications, Ltd. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

15.
Applied Energy ; 338, 2023.
Article in English | Scopus | ID: covidwho-2289075

ABSTRACT

Optimising HVAC operations towards human wellness and energy efficiency is a major challenge for smart facilities management, especially amid COVID situations. Although IoT sensors and deep learning were applied to support HVAC operations, the loss of forecasting accuracy in recursive prediction largely hinders their applications. This study presents a data-driven predictive control method with time-series forecasting (TSF) and reinforcement learning (RL), to examine various sensor metadata for HVAC system optimisation. This involves the development and validation of 16 Long Short-Term Memory (LSTM) based architectures with bi-directional processing, convolution, and attention mechanisms. The TSF models are comprehensively evaluated under independent, short-term recursive, and long-term recursive prediction scenarios. The optimal TSF models are integrated with a Soft Actor-Critic RL agent to analyse sensor metadata and optimise HVAC operations, achieving 17.4% energy savings and 16.9% thermal comfort improvement in the surrogate environment. The results show that recursive prediction leads to a significant reduction in model accuracy, and the effect is more pronounced in the temperature-humidity prediction model. The attention mechanism significantly improves prediction performance in both recursive and independent prediction scenarios. This study contributes new data-driven methods for smart HVAC operations in IoT-enabled intelligent buildings towards a human-centric built environment. © 2023 The Authors

16.
J Occup Environ Hyg ; : 1-13, 2022 Dec 05.
Article in English | MEDLINE | ID: covidwho-2256285

ABSTRACT

A series of experiments in stationary and moving passenger railcars was conducted to measure the removal rates of particles in the size ranges of SARS-CoV-2 viral aerosols, and the air changes per hour provided by the existing and modified air handling systems. The effect of ventilation and air filtration systems on removal rates and their effects on estimated probability (i.e., risk) of infection was evaluated in a range of representative conditions: (1) for two different ratios of recirculated air (RA) to outdoor air (OA) (90:10 RA:OA and 67:33 RA:OA); (2) using minimum efficiency reporting value (MERV) filters with standard (MERV-8) and increased (MERV-13) filtration ratings; and (3) in the presence and absence of a portable high-efficiency particulate-air (HEPA) room air purifier system operated at clean air delivery rate (CADR) of 150 and 550 cfm. The higher-efficiency MERV-13 filters significantly increased particle removal rates on average by 3.8 to 8.4 hr-1 across particle sizes ranging from 0.3 to 10 µm (p < 0.01) compared to MERV-8 filters. The different RA:OA ratios and the use of a portable HEPA air purifier system had little effect on particle removal rates. MERV-13 filters reduced the estimated probability of infection by 42% compared to the MERV-8 filter. The use of a HEPA-air purifier with a MERV-13 filter causes a 50% reduction in the estimated probability of infection. Upgrading the efficiency of HVAC filters from MERV-8 to MERV-13 in public transit vehicles is the most effective exposure control method resulting in a clear reduction in the removal rates of aerosol particles and the estimated probability of infection.

17.
Simulation-Transactions of the Society for Modeling and Simulation International ; 2023.
Article in English | Web of Science | ID: covidwho-2244471

ABSTRACT

The HVAC systems in closed buses promote high particle spread. Lagrangian particle tracking simulations were carried out to evaluate airborne COVID transmission through droplets emitted by sneezing while Eulerian simulations were performed to account for the spread of aerosols emitted by breathing. The position of passengers as well as the effect of three HVAC configurations were evaluated. On one hand, it was concluded that large droplets can travel more than 3 m without being significantly affected by the inflow conditions, but small droplets are easily dispersed by the airflow, and many of them are captured by the HVAC systems. On the other hand, the HVAC systems quickly spreads aerosols along the whole of the bus, increasing the average risk for all passengers, but sensibly reducing the high local risks observed under motionless inflow conditions. The transmission risk was calculated by applying the Wells-Riley model, concluding that the transmission risk for a 20-min trip could remain below 0.5% if HVAC configurations with many inlet/outlet vents are implemented, and the passengers remain in silence and wear face masks.

18.
Facilities ; 41(44958):65-80, 2023.
Article in English | Scopus | ID: covidwho-2240730

ABSTRACT

Purpose: The purpose of this study was to examine how data from the World Health Organization, United States Environmental Protection Agency and Center for Disease Control have evolved with relation to engineering controls for heating, ventilation and air-conditioning (HVAC) systems to mitigate the spread of spread of aerosols (specifically related to the COVID-19 pandemic) in occupied buildings. Design/methodology/approach: A document analysis of the pandemic-focused position documents from the aforementioned public health agencies and national HVAC authorities was performed. This review targeted a range of evidence from recommendations, best practices, codes and regulations and peer-reviewed publications and evaluated how they cumulatively evolved over time. Data was compared between 2020 and 2021. Findings: This research found that core information provided early in the pandemic (i.e. early 2020) for engineering controls in building HVAC systems did not vary greatly as knowledge of the pandemic evolved (i.e. in June of 2021). This indicates that regulating agencies had a good, early understanding of how airborne viruses spread through building ventilation systems. The largest evolution in knowledge came from the broader acceptance of building ventilation as a transmission route and the increase in publications and ease of access to the information for the general public over time. Originality/value: The promotion of the proposed controls for ventilation in buildings, as outlined in this paper, is another step toward reducing the spread of COVID-19 and future aerosol spread viruses by means of ventilation. © 2022, Emerald Publishing Limited.

19.
Sustainable Energy Technologies and Assessments ; 53, 2022.
Article in English | Web of Science | ID: covidwho-2235495

ABSTRACT

Air conditioning (AC) systems for tropical countries like India account for sixty percent of the total energy needs of a building. With the onset of COVID-19, the increase of fresh air ventilation rate has been recommended by various guidelines for indoor spaces which increase the load on the AC system. The present study attempts to reduce this burden through retrofitting a phase change material (PCM) embedded pin fin heat exchanger into an air-conditioning system. The heat exchanger is designed to cater to the peak load fluctuations for cities in three hot climatic zones of India, viz., Jaisalmer, Kolkata, and Delhi. Dodecanol with a melting temperature of 24 degrees C, is chosen as the appropriate PCM material for these locations. The optimal pin fin diameters are estimated through an entropy generation minimization analysis for the three locations. A heat transfer analysis of the PCM embedded heat exchanger is further presented through an analytical approach to estimate the PCM mass requirement and energy savings potential. The masses of the PCM estimated for Jaisalmer, Kolkata, and Delhi are 11.36 kg, 22.42 kg, and 19.35 kg, respectively for their respective peak load fluctuations of 0.25 kW, 0.28 kW and 0.48 kW. Energy savings of up to 4.7 % for Delhi, 2 % for Kolkata, and 2.75 % for Jaisalmer are identified with the PCM embedded heat exchanger incorporation. The results show the potential of such PCM thermal storage in reducing the peak energy demands of buildings amidst various environmental and health concerns.

20.
Simulation ; : 1, 2023.
Article in English | Academic Search Complete | ID: covidwho-2223959

ABSTRACT

The HVAC systems in closed buses promote high particle spread. Lagrangian particle tracking simulations were carried out to evaluate airborne COVID transmission through droplets emitted by sneezing while Eulerian simulations were performed to account for the spread of aerosols emitted by breathing. The position of passengers as well as the effect of three HVAC configurations were evaluated. On one hand, it was concluded that large droplets can travel more than 3 m without being significantly affected by the inflow conditions, but small droplets are easily dispersed by the airflow, and many of them are captured by the HVAC systems. On the other hand, the HVAC systems quickly spreads aerosols along the whole of the bus, increasing the average risk for all passengers, but sensibly reducing the high local risks observed under motionless inflow conditions. The transmission risk was calculated by applying the Wells-Riley model, concluding that the transmission risk for a 20-min trip could remain below 0.5% if HVAC configurations with many inlet/outlet vents are implemented, and the passengers remain in silence and wear face masks. [ FROM AUTHOR]

SELECTION OF CITATIONS
SEARCH DETAIL